
1

1

CSC 2212: Object-Oriented Programming

Spring 2012

Objects and classes: a first pass
  221 review
  software objects, classes, object-oriented design
  BlueJ IDE, compilation & execution, figures example
  method calls, parameters
  data types, object state
  other examples: Die, SequenceGenerator

Recall from 221…
programming is the process of designing/implementing/debugging algorithms

in a format that computers can understand & execute
  high-level languages (e.g., Python, Java, C++, C#, PHP, JavaScript) enable the

programmer to use abstract constructs (e.g., variables, while loop)
  a compiler and/or interpreter translates the high-level code into executable machine

code

2

variables
  are names that correspond to values, which can be set/updated via assignment

statements

>>> name = 'Guido'

  languages provide built-in operators for manipulating/combining values,
expressions can appear on the right-hand side of assignments

>>> average = (num1 + num2 + num3)/3.0

2

Recall from 221…
control statements provide for conditional execution and repetition

  in Python: if, if-else, if-elif-else, while, for

if average >= 60:
 print 'Nice job, you passed.'
else:
 print 'You failed. Get to work!'

num = 10
while num > 0:
 print num
 num = num – 1

sum = 0
for i in range(1, 11):
 sum = sum + i
print sum

3

Recall from 221…
functions enable the programmer to group statements together under a

single name
  a function is a unit of "computational abstraction"
  parameters make the function general, can be called on different values
  return statements make it possible to use the result in an expression

def sumToN(N):
 sum = 0
 for i in range(1, N+1):
 sum = sum + i
 return sum

>>> sumToN(10)
55
>>> sumToN(100)
5050
>>> sumToN(100)/100.0
50.5

4

3

Recall from 221…
strings and lists are simple, indexable data structures

  a string is a sequence of characters, with built-in operations (e.g., len, [], upper)
  a list is a sequence of arbitrary items, with built-in operations (e.g., len, [], reverse)

def acronym(phrase):
 words = phrase.split()
 str = ''
 for w in words:
 str = str + w[0]
 return str.upper()

>>> acronym("What you see is what you get")
'WYSIWYG'

>>> acronym("Fouled up beyond all recognition")
'FUBAR'

5

Recall from 221…
221 covered other language features & programming techniques

  list comprehensions

  library/module use

  I/O & file processing

  simple OO

HW6: Skip-3 Solitaire game
–  DeckOfCards class captured properties/behavior of a deck of cards
–  RowOfCards class captures properties/behaviors of a row of cards
–  Skip3 function could create objects to model these parts of the game, then focus

on the game interface

6

4

7

Object-oriented programming
the object-oriented approach to programming:

  solve problems by modeling real-world objects
e.g., if designing a banking system, model clients, accounts, deposits, …

  a program is a collection of interacting objects

  in software, objects are created from classes
the class describes the kind of object (its properties and behaviors)
the objects represent individual instantiations of the class

  the class encompasses all automobiles
they all have common properties: color, seats, wheels, engine, brakes, …
they all have common behaviors: can sit in them, start them, accelerate, steer, …

  each car object has its own specific characteristics and ways of producing behaviors
my car is white & seats 5; the batmobile is black & seats 2
accelerating with V-4 is different than accelerating with jet engine

REAL WORLD CLASS: automobiles
REAL WORLD OBJECTS: my 2011 Subaru Outback, the batmobile, …

Die example
Die

properties? behaviors?

8

sides __init__ (to initialize)
of rolls roll
 numberOfSides
 numberOfRolls

>>> d6 = Die(6)
>>> d8 = Die(8)
>>> d6.roll()
3
>>> d6.roll()
6
>>> d6.numberOfRolls()
2
>>> d8.numberOfRolls()
0

5

Skip-3 solitaire example
DeckOfCards

properties? behaviors?

9

list of cards (e.g., "QH") __init__ (to initialize)
 shuffle
 dealCard
 addCard
 numCards
 __str__ (convert to string)

RowOfCards
properties? behaviors?
list of cards (front == left) __init__ (to initialize)

 addAtEnd
 moveCard
 numCards
 __str__ (convert to string)

10

Shape classes and objects
a slightly more abstract example involves shapes

  class: circles
what properties do all circles share?
what behaviors do all circles exhibit?

  objects:

similarly, could define classes and object instances for other shapes

  squares:

  triangles:

6

11

BlueJ and software shapes

we will start with a visual example in BlueJ: drawing shapes

the BlueJ interactive development environment (IDE) is a tool for developing,
visualizing, and debugging Java programs
  BlueJ was developed by researchers at Deakin University (Australia), Maersk

Institute (Denmark), and University of Kent (UK)
  supported by Oracle (previously Sun Microsystems), the developers of Java

  note that BlueJ does NOT include a Java compiler/interpreter
must install Oracle’s JDK (Java Development Kit); BlueJ connects to it
BlueJ includes an editor, debugger, visualizer, documentation viewer, …

12

Starting up BlueJ
to start up the BlueJ IDE, double-click on the BlueJ desktop icon

to create a new BlueJ project
  click on the Project heading at the top left & select New Project
  enter the project name and location

to open an existing BlueJ project
  click on the Project heading at the top left & select Open Project
  browse to locate and select the project

this opens the BlueJ main window
  in order to create and execute a

program, must first create or load a
project

  a project groups together all the files
needed to produce a working program

7

13

Loading the figures project
download figures.zip from the class Code directory

  save it on the Desktop and double-click to unzip
  in BlueJ, select Open Project
  browse to select figures

when a project loads, its classes
are shown in a diagram
  here, there are 5 classes
  Canvas represents a painting

area
  Circle, Square, Triangle, and

Person represent shapes

  the arrows show that the shapes
depend upon the Canvas class

14

Editing and compiling classes
you can view/edit a class definition by double-clicking on its box

  this opens the associated file in the BlueJ editor

before anything can be executed, the classes must be compiled
  recall, the Java compiler translates Java source code into Java byte code
  to compile all classes in a project, click on the Compile button

(note: non-compiled classes are shaded, compiled classes are not)

IMPORTANT: classes don’t act, objects do!
  you can’t drive the class of all automobiles
  but you can drive a particular instance of an automobile

in order to draw a circle, must create a circle object
  then, can specify properties of that instance (radius, color, position, …)

8

15

Example: creating a circle

right-click on a class to see all the actions
that can be applied
  select new Circle() to create a new object

  you will be prompted to specify a name for
that object (circle1 by default)

the new Circle object appears as a box at
the bottom of the screen
  note: classes and objects look different

EXERCISE: create 2 circles, a square, and a
triangle

16

Applying object methods

can cause objects to act by right-clicking
on the object box, then selecting the
action
  the actions that objects can perform are

called methods
 (same as in Python: a method is a function
that belongs to an object.)

  here, void makeVisible() opens a
Canvas in which the shape is displayed

EXERCISE: make the other shapes visible

EXERCISE: select other methods to change
the color and size of objects

EXERCISE: play

9

17

Methods and parameters
sometimes an action (i.e., method) requires information to do its job

  the changeColor method requires a color (“red”, “green”, “black”, …)
  the moveHorizontal method requires a number (# of pixels to move)

  data values provided to a method are called parameters

Java provides for different types of values
  String is a sequence of characters, enclosed in double-quotes (e.g., “red”)
  int is an integer value (e.g., 40)
  double is a real value (e.g., 3.14159)
  char is a character value (e.g., ‘A’)

  the parameter to changeColor is a String representing the new color
  the parameter to moveHorizontal is an int representing the # of pixels to

move

18

Objects and state
recall that each object has properties and methods associated with it

  when you create a Circle, it has an initial size, color, position, …
  those values are stored internally as part of the object
  as methods are called, the values may change

  at any given point, the property values of an object define its state

BlueJ enables you to inspect state of an object
  right-click on the object
  select Inspect to see the values of

 object properties

note: objects of the same class have
the same properties, but may have
different values

10

19

IN-CLASS EXERCISE

create objects and call the appropriate
methods to produce a picture like this

20

Another example: Die class
can define a Die class to model different (numeric) dice

  properties shared by all dice: number of sides, number of times rolled
  behaviors/methods shared by all dice: roll it, get # of sides, get # of rolls

  the roll method generates a random roll and returns it
the return value is displayed by BlueJ in a Method Result window

11

21

Another example: SequenceGenerator
there are two options for creating a SequenceGenerator object

  can specify an alphabet to choose from (e.g., "etaoinshrd")
  if nothing specified, will assume "abcdefghijklmnopqrstuvwxyz"

