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CSC 321: Data Structures 

Fall 2013 

Hash tables 
  HashSet & HashMap 
  hash table, hash function 
  collisions 

 linear probing, lazy deletion, primary clustering 
 quadratic probing, rehashing 
 chaining 
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HashSet & HashMap 

recall: TreeSet & TreeMap use an underlying binary search tree (actually, 
a red-black tree) to store values 
  as a result, add/put, contains/get, and remove are O(log N) operations 
  iteration over the Set/Map can be done in O(N) 

the other implementations of the Set & Map interfaces, HashSet & 
HashMap, use a "magic" data structure to provide O(1) operations* 

 *legal disclaimer: performance can degrade to O(N) under bad/unlikely conditions 
 however, careful setup and maintenance can ensure O(1) in practice 

the underlying data structure is known as a Hash Table 
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Hash tables 
a hash table is a data structure that supports constant time insertion, 
deletion, and search on average 

  degenerative performance is possible, but unlikely 
  it may waste some storage 
  iteration order is not defined (and may even change over time) 

idea: data items are stored in a table, based on a key 
  the key is mapped to an index in the table, where the data is stored/accessed 

example: letter frequency 
  want to count the number of occurrences of each letter in a file 

  have an array of 26 counters, map each letter to an index 

  to count a letter, map to its index and increment 

1 
0 
3 

. . . 
0 

"A"  0 

"B"  1 

"C"  2 

"Z"  25 
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Mapping examples 
extension: word frequency 

  must map entire words to indices, e.g., 

  "A"  0   "AA"  26  "BA"  52  . . . 
  "B"  1   "AB"  27  "BB"  53  . . . 
      . . .       . . .       . . . 
  "Z"  25   "AZ"  51  "BZ"  77 . . . 

  PROBLEM? 

mapping each potential item to a unique index is generally not practical 
 # of 1 letter words = 26 
 # of 2 letter words = 262 = 676 
 # of 3 letter words = 263 = 17,576 
 . . . 

  even if you limit words to at most 8 characters, need a table of size 217,180,147,158 
  for any given file, the table will be mostly empty! 
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Table size < data range 
since the actual number of items stored is generally MUCH smaller than the 

number of potential values/keys: 
  can have a smaller, more manageable table 

  e.g., table size = 26 
  possible mapping: map word based on first letter 

   "A*"  0   "B*"  1   . . .       "Z*"  25   

  e.g., table size = 1000 
  possible mapping: add ASCII values of letters, mod by 1000 

   "AB"  65 + 66 = 131 

   "BANANA"  66 + 65 + 78 + 65 + 78 + 65 = 417 

   "BANANABANANABANANA"  417 + 417 + 417 = 1251 % 1000 = 251 
   

  POTENTIAL PROBLEMS? 
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Collisions 
the mapping from a key to an index is called a hash function 

  the hash function can be written independent of the table size 
  if it maps to an index > table size, simply wrap-around (i.e., index % tableSize) 

since |range(hash function)| < |domain(hash function)| , 
can have multiple items map to the same index (i.e., a collision) 

   
 "ACT"  67 + 65 + 84 = 216   "CAT"  67 + 65 + 84 = 216 

techniques exist for handling collisions, but they are costly (LATER) 
it's best to avoid collisions as much as possible – HOW? 

  want to be sure that the hash function distributes the key evenly 

  e.g., "sum of ASCII codes" hash function 
OK  if table size is 1000 
BAD  if table size is 10,000 

  most words are <= 8 letters, so max sum of ASCII codes = 1,016 
  so most entries are mapped to first 1/10th of table 
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Better hash function 
a good hash function should  

  produce an even spread, regardless of table size 
  take order of letters into account (to handle anagrams) 

  the hash function used by java.util.String multiplies the ASCII code for 
each character by a power of 31 

hashCode() = char0*31(len-1) +char1*31(len-2) + char2*31(len-3) + … + char(len-1) 

 where len = this.length(), chari = this.charAt(i): 

/** 
 * Hash code for java.util.String class 
 *   @return an int used as the hash index for this string 
 */ 
private int hashCode() { 
    int hashIndex = 0; 

    for (int i = 0; i < this.length(); i++) { 
        hashIndex = (hashIndex*31 + this.charAt(i)); 
    } 
    return hashIndex; 
} 
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Word frequency example 
returning to the word frequency problem 

  pick a hash function 
  pick a table size 

  store word & associated count in the table 

  as you read in words, 
map to an index using the hash function 
if an entry already exists, increment 
otherwise, create entry with count = 1 

"FOO" 
1 

. . . 

"BAR" 
3 

0 

1 

2 

999 

WHAT ABOUT COLLISIONS? 
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Linear probing 
linear probing is a simple strategy for handling collisions 

  if a collision occurs, try next index & keep looking until an empty one is found 
(wrap around to the beginning if necessary) 

assume naïve "first letter" hash function 

  insert "BOO" 

  insert "COO" 

  insert "BOW" 

  insert "BAZ" 

  insert "ZOO" 

  insert "ZEBRA" 
. . . 

0 

1 

2 

25 

3 

4 
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Linear probing (cont.) 
with linear probing, will eventually find the item if stored, or an empty space 
to add it (if the table is not full) 

what about deletions? 

  delete "BIZ" 

can the location be marked as empty? 

"AND" 

. . . 

"BIZ" 

0 

1 

2 

"COO" 

"BOO" 

can't delete an item since it holds a place for the 
linear probing 

  search "COO" 

3 
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Lazy deletion 
when removing an entry 

  mark the entry as being deleted (i.e., insert a "tombstone" ) 
  subsequent searches must continue past tombstones (probe until desired item or 

an empty location is found) 
  subsequent insertions can overwrite tombstones 

ADD "BOO" 

ADD "AND" 

ADD "BIZ" 

ADD "COO" 

DELETE "BIZ" 

SEARCH "COO" 

ADD "COW" 

SEARCH "COO" 

0

1

2

3

4

5

6

7
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Primary clustering 
in practice, probes are not independent 

  suppose table is half full 

 maps to 4-7 require 1 check   
 map to  3 requires  2 checks 
 map to  2 requires  3 checks 
 map to  1 requires  4 checks 
 map to  0 requires  5 checks 

 average = 18/8 = 2.25 checks 

"AND" 

"BOO" 

"BIZ" 

"COO" 

0 

1 

2 

3 

4 

5 

6 

7 

using linear probing, clusters of occupied locations develop 
  known as primary clusters 

insertions into the clusters are expensive & increase the size of the cluster 
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Analysis of linear probing 
the load factor λ is the fraction of the table that is full 

empty table  λ = 0    half full table  λ = 0.5  full table  λ = 1 

THEOREM: assuming a reasonably large table, the average number of 
locations examined per insertion (taking clustering into account) is 
roughly  (1 + 1/(1-λ)2)/2 

empty table  (1 + 1/(1 - 0)2)/2 = 1 
half full   (1 + 1/(1 – .5)2)/2 = 2.5 
3/4 full   (1 + 1/(1 - .75)2)/2 = 8.5 
9/10 full   (1 + 1/(1 - .9)2)/2 = 50.5 

as long as the hash function is fair and the table is not too full, then inserting, 
deleting, and searching are all O(1) operations 
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Rehashing 

it is imperative to keep the load factor below 0.75 
if the table becomes three-quarters full, then must resize 

  create new table at least twice as big 
  just copy over table entries to same locations??? 

  NO! when you resize, you have to rehash existing entries 
new table size  new hash function (+ different wraparound) 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 

2 

3 

LET hashCode = word.length() 

ADD "UP" 

ADD "OUT" 

ADD "YELLOW" 

NOW 
RESIZE 
AND 
REHASH 
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Chaining 
there are variations on linear probing that eliminate primary clustering 

  e.g., quadratic probing increases index on each probe by square offset 

Hash(key)  Hash(key) + 1  Hash(key) + 4  Hash(key) + 9  Hash(key) + 16  … 

however, the most commonly used 
strategy for handling collisions is 
chaining 
  each entry in the hash table is a 

bucket (list) 

  when you add an entry, hash to 
correct index then add to bucket 

  when you search for an entry, hash 
to correct index then search 
sequentially 

. 

. 

. 

0 

1 

2 

3 

25 

"AND" "APPLE" 

"CAT" "COO" "COWS" 

"DOG" 
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Analysis of chaining 

in practice, chaining is generally faster than probing 
  cost of insertion is O(1) – simply map to index and add to list 

  cost of search is proportional to number of items already mapped to same index 
e.g., using naïve "first letter" hash function, searching for "APPLE" might requires 

traversing a list of all words beginning with 'A' 

if hash function is fair, then will have roughly λ/tableSize items in each bucket 
  average cost of a successful search is roughly λ/(2*tableSize)  

chaining is sensitive to the load factor, but not as much as probing – WHY? 



Hashtable class 
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Java provides a basic hash table 
implementation 
  utilizes chaining 
  can specify the initial table size & 

threshold for load factor 
  can even force a rehashing 

note commonly used, instead 
provides underlying structure for 
HashSet & HashMap 
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HashSet & HashMap 
java.util.HashSet and java.util.HashMap use hash table w/ chaining 

  e.g., HashSet<String>   HashMap<String, Integer> 

. 

. 

. 

0 

1 

2 

3 

25 

"AND" "APPLE" 

"CAT" "COO" "COWS" 

"DOG" 

. 

. 

. 

0 

1 

2 

3 

25 

"AND" 

4 

"APPLE" 

1 

"CAT" 

2 

"COO" 

1 

"COWS" 

3 

"DOG" 

2 

note: iterating over a HashSet or HashMap is:  O(num stored + table size)  WHY? 

  defaults: table size = 16, max capacity before rehash = 75% 
can override these defaults in the HashSet/HashMap constructor call 



hashCode function 
a default hash 
function is 
defined for every 
Object  
  uses native code 

to access & 
return the 
address of the 
object 
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overriding hashCode v.1 
can override 
hashCode if more 
class-specific 
knowledge helps 

1.  must consistently map 
the same object to the 
same index 

2.  must map equal 
objects to the same 
index 
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overriding hashCode v.2 
to avoid birthday 
collisions, can also 
incorporate the 
names 
  utilize the String 

hashCode method 

21 


