
1

1

CSC 321: Data Structures

Fall 2013

See online syllabus (also available through BlueLine2):
http://dave-reed.com/csc321

Course goals:
  To understand fundamental data structures (lists, stacks, queues, sets, maps, and

linked structures) and be able to implement software solutions to problems using
these data structures.

  To achieve a working knowledge of various mathematical structures essential for
the field of computer science, including graphs, trees, and networks.

  To develop analytical techniques for evaluating the efficiency of data structures and
programs, including counting, asymptotics, and recurrence relations.

  To be able to design and implement a program to model a real-world system,
selecting and implementing appropriate data structures.

2

221 vs. 222 vs. 321
221: intro to programming via scripting

  focused on the design & analysis of small scripts (in Python)
  introduced fundamental programming concepts

 variables, assignments, expressions, I/O
 control structures (if, if-else, while, for), lists
 functions, parameters, intro to OO

222: object-oriented programming
  focused on the design & analysis of more complex programs (in Java)
  utilized OO approach & techniques for code reuse

 classes, fields, methods, objects
 interfaces, inheritance, polymorphism, object composition
 searching & sorting, Big-Oh efficiency, recursion, GUIs

you should
be familiar
with these
concepts
(we will do
some
review next
week, but
you should
review your
own notes &
text)

321: data-driven programming & analysis
  focus on problems that involve storing & manipulating large amounts of data
  focus on understanding/analyzing/selecting appropriate structures for problems

 standard collections (lists, stacks, queues, trees, sets, maps)
 mathematical structures (trees, graphs, networks)
 analysis techniques (counting, asymptotics, recurrence relations)

2

3

When problems start to get complex…

…choosing the right algorithm and data structures are important
  e.g., phone book lookup, checkerboard puzzle

  must develop problem-solving approaches (e.g., brute force, backtracking)
  be able to identify appropriate data structures (e.g., lists, trees, sets, maps)

EXAMPLE: suppose you want to write a program
for playing Boggle (Parker Bros.)
  need to be able to represent the board
  need to be able to store and access the dictionary
  need to allow user to enter words
  need to verify user words for scoring
  perhaps show user words they missed

4

Possible implementations
1.  for each user word entered, search the Boggle board for that word

  But how do you list all remaining words at the end?

2.  build a list of all dictionary words on the Boggle board by:
  searching for each word in the dictionary, add to list if on the board.
For each user word entered, search the list to see if stored (and mark as used).
At the end, display all words in the list not marked as used.

3.  build a list of all dictionary words on the Boggle board by:
  exhaustively searching the board, checking letter sequences to see if in the

dictionary.
For each user word entered, search the list to see if stored (and mark as used).
At the end, display all words in the list not marked as used.

3

Another example: anagram finder
you are given a large dictionary of 117,663 words

repeatedly given a word, must find all anagrams of that word

  pale leap pale peal plea
  steal least setal slate stale steal stela taels tales teals tesla
  banana banana

5

there are many choices to be made & many "reasonable" decisions
  how do you determine if two words are anagrams?
  should you store the dictionary words internally? if so, how?
  should you preprocess the words? if so, how?
  is a simplistic approach going to be efficient enough to handle 117K words?
  how do you test your solution?

6

Possible implementations
1.  generate every permutation of the letters, check to see if a word

  how many permutations are there?
  will this scale?

2.  for each word, compare against every other word to see if an anagram
  how costly to determine if two words are anagrams?
  how many comparisons will be needed?
  will this scale?

3.  preprocess all words in the dictionary and index by their sorted form
  e.g., store "least" and "steal" together, indexed by "aelst"
  how much work is required to preprocess the entire dictionary?
  how much easier is the task now?

4

HW1: tag clouds
HW1 is posted

  due in 2+ weeks, so lots of time
  designed to reengage you with CSC222 material
  you will works in two-person teams (assigned by instructor)
  work together (and with me) to locate and fill holes in your knowledge/skills

you will design & implement two programs that generate tag clouds
e.g., tag cloud of 20 most frequent words in 2013 State of the Union Speech

7

HW1: in 2 parts
1.  WordFrequencies.java

  takes a text file and generates a stats file, with words & frequencies
2.  TagCloud.java

  takes a stats file & a number, and generates a Web page with tag cloud

8

1 2

